3x^2-8i=12-(12y)i

Simple and best practice solution for 3x^2-8i=12-(12y)i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-8i=12-(12y)i equation:


Simplifying
3x2 + -8i = 12 + -1(12y) * i

Reorder the terms:
-8i + 3x2 = 12 + -1(12y) * i

Remove parenthesis around (12y)
-8i + 3x2 = 12 + -1 * 12y * i

Multiply -1 * 12
-8i + 3x2 = 12 + -12y * i

Multiply y * i
-8i + 3x2 = 12 + -12iy

Solving
-8i + 3x2 = 12 + -12iy

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '12iy' to each side of the equation.
-8i + 12iy + 3x2 = 12 + -12iy + 12iy

Combine like terms: -12iy + 12iy = 0
-8i + 12iy + 3x2 = 12 + 0
-8i + 12iy + 3x2 = 12

Add '-3x2' to each side of the equation.
-8i + 12iy + 3x2 + -3x2 = 12 + -3x2

Combine like terms: 3x2 + -3x2 = 0
-8i + 12iy + 0 = 12 + -3x2
-8i + 12iy = 12 + -3x2

Reorder the terms:
-12 + -8i + 12iy + 3x2 = 12 + -3x2 + -12 + 3x2

Reorder the terms:
-12 + -8i + 12iy + 3x2 = 12 + -12 + -3x2 + 3x2

Combine like terms: 12 + -12 = 0
-12 + -8i + 12iy + 3x2 = 0 + -3x2 + 3x2
-12 + -8i + 12iy + 3x2 = -3x2 + 3x2

Combine like terms: -3x2 + 3x2 = 0
-12 + -8i + 12iy + 3x2 = 0

The solution to this equation could not be determined.

See similar equations:

| 5x-17-2x=6x-1-x-8 | | 1/5x+3=2x-24 | | -8r+3=-64 | | 9+12=-9-3z | | 25-3x=-7x+4 | | 7-3y+2=0 | | 9x-5(x+6)=-10 | | (r/1.2)+7.5=45 | | 21k-17+8k=4-21k-6 | | 2+6+7rs= | | 31.9/5.8 | | y=-6x+24 | | 1/2=q+2/3 | | Y=3/5x^2+30+382 | | -7+4x=-3 | | n-(-8)=-2 | | 6[y]=-12 | | 5x-2+3x=2x+6-4 | | -[6x+(8x+5)]=8-(7x+9) | | 5(n-3)=3(n+7) | | -12/13/4/26 | | 3hk-2k-12h+8=0 | | [x]+12=21 | | 46.0265=7.3g+46 | | 5x+1=9x-72 | | [x]-12=21 | | 26z=-15+30z+26z | | p^2-2pq+pr-2qr=0 | | 16.6=.8x-17 | | (14+y)+3=1135234 | | 6-2x=28 | | -8+(22x+23)+17x-28x=-25-(18x+21) |

Equations solver categories